/v

AARHUS UNIVERSITET

Software Engineering
and Architecture

Broker |l: Dispatching

/v

AARHUS UNIVERSITET

Dispatching

A train dispatcher (US), rail traffic controller (Canada),
train controller (Australia) or signalman (UK}, is employed
by a railroad to direct and facilitate the movement of trains
over an assigned territory, which is usually part, or all, of a
railroad operating division. The dispatcher is also
responsible for cost effective movement of trains and other
on-track railroad equipment to optimize physical (trains) and
human resource (crews) assets [1Ifull citation needed]

In computing, dispatchers are

responsible for distributing
incoming messages efficiently

AU CS Henrik Baerbak Christensen 2

eV Invoker Becomes The Blob

AARHUS UNIVERSITET
« Consider HotCiv’'s Invoker’s ‘handleRequest’:

1 // === GAME

2 1if (operationName.equals(MarshallingConstants.GAME_GET_PLAYER_IN_TURN)) {
3

4 } else if (operationName.equals(MarshallingConstants.GAME_END_OF_TURN)) {
5

6 [lots of more if clauses removed]

8 S/ === UNIT

9 |} else if (operationName.equals(MarshallingConstants.UNIT_GET_OWNER)) {
10

11 [lots of more if clauses removed]

13 S/ === CITY

14 } else if (operationName.equals(MarshallingConstants.CITY_GET_OWNER)) {
15

HotStone equivalent: Game, Card, Hero
AU CS Henrik Baerbak Christensen 3

eV Blobs do not scale

AARHUS UNIVERSITET

« Consider 20 remote roles
— Thus the invoker handles twenty different servant classes

e ... With each 10 methods

— Thus the invoker handles 200 methods...

 That is an ‘if () else if () else if() else if()’ with 200
branches... ®

/v Composition!

AARHUS UNIVERSITET

« Favor object composition
— Instead of one object doing it all, delegate to specialists
— Let someone else do the dirty job

* Insight:

Let us have one Invoker per role in the system.

Let a ‘root invoker’ determine which invoker to
delegate to.

AU CS Henrik Baerbak Christensen 5

/v Marshalling Matters

AARHUS UNIVERSITET

* So, | have actually prepared for this in my marshalling
— Three classes and three prefixes on the method names

puklic class MarshallingConstant |

S/ Type prefixes

public static final String GAME LOBBY_ FREFIX
public static final String FUTUREGRME FEEFIX
public static final String GAME PFREFIX = "gams"

"gamelobby":

"futuregame";

il

f/ Method ids for marshalling
public static final String GAMELOBEY CEERTE GIME METHOD = |GRME LOBBY FREFIX + "_c
public static final 5tring GAMELOBBY JOIN GAME METHOD = GAME LUDDY FREFIE T _JoLu

public static final String FUTUREGAME GEI_JOIN TOKEN METHOD = FUTUREGEME FREFIX + "_2
public static final 5tring FUTUREGAME IS5 AVAILABLE METHOD = FUTUREGAME PREFIX + "_i=z_
public static final String FUTUREGAME GET GAME METHOD = FUTUREGAME FREFIXE + " _g=t_ gam

public static final String GAME GET_ FLAYER NAME = GAME PFREFIE + " _get_playesr
public static final String GAME GET FLAYER IN TURN = GAME FREFIE + " _gst_playe
public static final String GAME MOVE = GRME PREFTX + " _move _method";

method™;

_turn_method™;

ot o1l

AU CS Henrik Baerbak Christensen 6

\ 4
AARHUS UNIVERSITET

In compiler construction, name mangling (also called name decoration) is a technique used to solve various
problems caused by the need to resolve unigue names for programming entities in many modern programming

languages.

Name Mangling

It provides a way of encoding additional information in the name l)f a function, structure, class or another

datatype in order to pass more semantic information from the compilers to linkers.

public class MarshallingConstant |

[/ Type prefixes

public static final String GAME LOBEY FREFIX =
public static final String FUIUREGAME FREFIXK = "Ifutursgams";

amelokbhy™;

public static final String GAME PREFIX = "gams";

S/ Method ids for marshalling
GAMELOBBY CREATE GAME METHOD = |GAME LOBBY PEEFIX + " create_game method";

public atatic final
public static final

public static final
public static final
public static finmal

pubklic atatic final
public atatic final
public static final

String
String

String
String
String

String
String
String

My method names includes the

name of the class

GAMELOBBY JOIN GAME METHOD = GOFE LOODT FREFIE T JOLIL Goic e Chiod s

FUTUREGAME_GET_JOIN TOKEN METHOD = FUTUREGAME PREFIX + " get_join tok
FUTUREGAME IS AVAILABLE METHOD = FUTUREGAME PREFIX + " is available &
FUTUREGAME GET GAME METHOD = FUTUREGAME PREFIX + " get game method";

GAME GET_FPLAYER NAME = GAME PREFIX + "_g=t_playver_nams_method™:
GAME GET_PLAYER IN TUBN = GAME FREFIX + " _get _player in turn method";
GLME MOVE = GRME FREFIX + "_move_method”:

=T
=
m=t
=

n_method™;
thod™?

AU CS

Henrik Baerbak Christensen

/v So, | Delegate

AARHUS UNIVERSITET
* The Invoker simply looks up the associated Invoker

public class GameLobbyRootInvoker implements Invoker |

@0verride

public String handleRequest(String request) {
RequestObject requestObject = gson.fromJson(request, ReguestObject.class);
String operationName = requestObject.getOperationName();

'/ Identify the invoker to use EXtraCt the CIaSS

String type = operationName.substring(®, operationName.indexOf(MarshallingConstant.SEPARATOR));

name

Invoker subInvoker = invokerMap.get(type);

String reply;
try {
reply = subInvoker.handleRequest(request); ?
} catch (UnknownServantException e) {
reply = gson.toJdson(
new ReplyObject(
HttpServlietResponse.SC_NOT_FOUND,
e.getMessage()));
+
return reply;

AU CS Henrik Baerbak Christensen 8

/v Setting up the Lookup

AARHUS UNIVERSITET
« Have to initialize the root invoker

public GameLobbyBootInwoker (GameLokby lobby) |
this.lokby = lobbyr
gaon = new Gsonl):

ochjectitorage = new InMemoryObijectStorage ()
invokerMap = new HashMap<>{):

// Create an invoker for sach handled type/class
J/ and put them in & map, binding them to the

f/ operationName prefixes

Invoker gamelobbyInvoker = new GamelobbyInvoker{lokby, objectStorage, gson):;
invckerHaE.EutEHarshallinchnstant.GRHE LOBEY PEEFIX, gamelobbylnwvoker):
Invoker futureGameInvoker = new FutureGameInvoker {ochjectStorage, gson):
invokerMap.put (MarshallingConstant.FUTUREGAME FREFIX, futureGameInvoker);

T IIVOKEL JalElNVOLEL = Ltw GalElIVOLEL (0L JECLoLOLage, JoSom) @

invokerMap.put (MarshallingConstant.GAME PREFIX, gameInwoker):

}

AU CS Henrik Baerbak Christensen 9

~ Smaller, Type-specific, Invokers

AARHUS UNIVERSITET
* Achieve high cohesion in the type specific invokers

pulkxlic class FutureGameInvoker implements Invoker |

public String handleRequest(String request) {

RequestObject reguestObject = gson.fromJson(request, RequestObject.class);
String objectId = requestObject.getObjectId();

String operationName = requestObject.getOperationName();

String payload = regquestObject.getPayload();

JsonArray array = JsonParser.parseString(payload).getAsJsonArray();

ReplyObject reply = null;

if (operationName.eguals(MarshallingConstant.FUTUREGAME_GET_JOIN_TOKEN_METHOD)) {
FutureGame futureGame = nameService.getFutureGame(objectId);
String token = futureGame.getJoinToken();
reply = new ReplyObject(HttpServlietResponse.SC_0K, gson.tolson(token));

} else if (operationName.equals(MarshallingConstant.FUTUREGAME_IS_AVAILABLE_METHOD)) {
FutureGame futureGame = nameService.getFutureGame(objectId);
boolean isAvailable = futureGame.isAvailable();
reply = new ReplyObject(HttpServlietResponse.SC_0K, gson.tolson(isAvailable));

} else if (operationName.equals(MarshallingConstant.FUTUREGAME_GET_GAME_METHOD)) {
FutureGame futureGame = nameService.getFutureGame(objectId);
Game game = futureGame.getGame():
String id = game.getId();
reply = new ReplyObject(HttpServlietResponse.S5C_0K, gson.toJdson(id));

+

AU CS return gson.toJson(reply); 10

/v [SideBar]

AARHUS UNIVERSITET

« Many, very similar, methods can be lambda’ed a lot©

— In my Cardlnvoker, | just have a mapping from OperationName to
f(card): ReplyObject

private final HashMap<5tring, Function<Card, Reply0Object>> functionMap;

— In my ‘handleRequest()’ | do little else but just lookup and apply

reply = functionMap.get(operationName).apply(card);

— ... on a configured function map

functionMap = new HashMap<>();
functionMap.put(OperationNames.CARD_GET_NAME,

(card) -> new ReplyObject(HttpServlietResponse.SC_0K, gson.todson(card.getName())));
functionMap.put(OperationNames.CARD_GET_MANA_COST,

(card) -> new ReplyObject(HttpServletResponse.SC_0K, gson.toJson(card.getManaCost())));
functionMap.put(OperationNames.CARD_GET_HEALTH,

(card) -> new ReplyObject(HttpServlietResponse.SC_0K, gson.toJson(card.getHealth())));
functionMap.put(OperationNames.CARD_GET_ATTACK,

(card) -> new ReplyObject(HttpServlietResponse.SC_0K, gson.toJson(card.getAttack())));

AU CS Henrik Baerbak Christensen 11

/v

AARHUS UNIVERSITET
 Conclusion:

AU CS

Process

Multi Type Dispatching

Consider an Invoker that must handle method dispatching for a large set of
roles. To avoid a blob or god class Invoker implementation, you can follow
this template:

+ Ensure your operationld follows a mangling scheme that allows extract-
ing the role name. A typical way is to construct a String type operationld
that concatenates the type name and the method name, with a unique

seperator in between. Example: “FutureGame_getToken”. .
- Construct Sublnvokers for each servant role. A SubInvoker is role

specific and only handles dispatching of methods for that particular

role. The SubInvoker implements the Invoker interface.
+ Develop a RootInvoker which constructs a (key, value) map that maps

from role names (key) to sub invoker reference (value). Example: if you
look up key “FutureGame” you will get the sub invoker specific to the
FutureGameServant’s methods

+ Associate the RootInvoker with the ServerRequestHandler. In it’s han-

dleRequest() calls, it demangles the incoming operationld to get the role
name, and uses it to look up the associated SubInvoker, and finally
delegates to its handleRequest() method.

Henrik Baerbak Christensen 12

