
Software Engineering

and Architecture

Broker II: Dispatching



Dispatching

AU CS Henrik Bærbak Christensen 2

In computing, dispatchers are 
responsible for distributing 

incoming messages efficiently



Invoker Becomes The Blob

• Consider HotCiv’s Invoker’s ‘handleRequest’:

AU CS Henrik Bærbak Christensen 3

HotStone equivalent: Game, Card, Hero



Blobs do not scale

• Consider 20 remote roles

– Thus the invoker handles twenty different servant classes

• ... With each 10 methods

– Thus the invoker handles 200 methods...

• That is an ‘if () else if () else if() else if()’ with 200 

branches... 

AU CS Henrik Bærbak Christensen 4



Composition!

• Favor object composition

– Instead of one object doing it all, delegate to specialists

– Let someone else do the dirty job

• Insight:

AU CS Henrik Bærbak Christensen 5

Let us have one Invoker per role in the system.
Let a ‘root invoker’ determine which invoker to 

delegate to.



Marshalling Matters

• So, I have actually prepared for this in my marshalling

– Three classes and three prefixes on the method names

AU CS Henrik Bærbak Christensen 6



Name Mangling

AU CS Henrik Bærbak Christensen 7

My method names includes the 
name of the class



So, I Delegate

• The Invoker simply looks up the associated Invoker

AU CS Henrik Bærbak Christensen 8

Extract the class 
name



Setting up the Lookup

• Have to initialize the root invoker

AU CS Henrik Bærbak Christensen 9



Smaller, Type-specific, Invokers

• Achieve high cohesion in the type specific invokers

AU CS Henrik Bærbak Christensen 10



[SideBar]

• Many, very similar, methods can be lambda’ed a lot☺

– In my CardInvoker, I just have a mapping from OperationName to 

f(card): ReplyObject

– In my ‘handleRequest()’ I do little else but just lookup and apply

– … on a configured function map

AU CS Henrik Bærbak Christensen 11



Process

• Conclusion:

AU CS Henrik Bærbak Christensen 12


